direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23×D28, C28⋊2C24, D14⋊1C24, C14.3C25, C24.82D14, C7⋊1(D4×C23), (C23×C4)⋊7D7, C4⋊2(C23×D7), (C23×C28)⋊9C2, (D7×C24)⋊4C2, C14⋊1(C22×D4), C2.4(D7×C24), (C2×C28)⋊14C23, (C22×C14)⋊16D4, (C22×C4)⋊45D14, (C22×D7)⋊7C23, (C2×C14).325C24, (C22×C28)⋊61C22, (C23×D7)⋊22C22, C22.53(C23×D7), C23.346(C22×D7), (C23×C14).115C22, (C22×C14).432C23, (C2×C14)⋊12(C2×D4), (C2×C4)⋊11(C22×D7), SmallGroup(448,1367)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23×D28
G = < a,b,c,d,e | a2=b2=c2=d28=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 6788 in 1362 conjugacy classes, 543 normal (9 characteristic)
C1, C2, C2, C2, C4, C22, C22, C7, C2×C4, D4, C23, C23, D7, C14, C14, C22×C4, C2×D4, C24, C24, C28, D14, D14, C2×C14, C23×C4, C22×D4, C25, D28, C2×C28, C22×D7, C22×D7, C22×C14, D4×C23, C2×D28, C22×C28, C23×D7, C23×D7, C23×C14, C22×D28, C23×C28, D7×C24, C23×D28
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, C25, D28, C22×D7, D4×C23, C2×D28, C23×D7, C22×D28, D7×C24, C23×D28
(1 35)(2 36)(3 37)(4 38)(5 39)(6 40)(7 41)(8 42)(9 43)(10 44)(11 45)(12 46)(13 47)(14 48)(15 49)(16 50)(17 51)(18 52)(19 53)(20 54)(21 55)(22 56)(23 29)(24 30)(25 31)(26 32)(27 33)(28 34)(57 150)(58 151)(59 152)(60 153)(61 154)(62 155)(63 156)(64 157)(65 158)(66 159)(67 160)(68 161)(69 162)(70 163)(71 164)(72 165)(73 166)(74 167)(75 168)(76 141)(77 142)(78 143)(79 144)(80 145)(81 146)(82 147)(83 148)(84 149)(85 195)(86 196)(87 169)(88 170)(89 171)(90 172)(91 173)(92 174)(93 175)(94 176)(95 177)(96 178)(97 179)(98 180)(99 181)(100 182)(101 183)(102 184)(103 185)(104 186)(105 187)(106 188)(107 189)(108 190)(109 191)(110 192)(111 193)(112 194)(113 222)(114 223)(115 224)(116 197)(117 198)(118 199)(119 200)(120 201)(121 202)(122 203)(123 204)(124 205)(125 206)(126 207)(127 208)(128 209)(129 210)(130 211)(131 212)(132 213)(133 214)(134 215)(135 216)(136 217)(137 218)(138 219)(139 220)(140 221)
(1 66)(2 67)(3 68)(4 69)(5 70)(6 71)(7 72)(8 73)(9 74)(10 75)(11 76)(12 77)(13 78)(14 79)(15 80)(16 81)(17 82)(18 83)(19 84)(20 57)(21 58)(22 59)(23 60)(24 61)(25 62)(26 63)(27 64)(28 65)(29 153)(30 154)(31 155)(32 156)(33 157)(34 158)(35 159)(36 160)(37 161)(38 162)(39 163)(40 164)(41 165)(42 166)(43 167)(44 168)(45 141)(46 142)(47 143)(48 144)(49 145)(50 146)(51 147)(52 148)(53 149)(54 150)(55 151)(56 152)(85 139)(86 140)(87 113)(88 114)(89 115)(90 116)(91 117)(92 118)(93 119)(94 120)(95 121)(96 122)(97 123)(98 124)(99 125)(100 126)(101 127)(102 128)(103 129)(104 130)(105 131)(106 132)(107 133)(108 134)(109 135)(110 136)(111 137)(112 138)(169 222)(170 223)(171 224)(172 197)(173 198)(174 199)(175 200)(176 201)(177 202)(178 203)(179 204)(180 205)(181 206)(182 207)(183 208)(184 209)(185 210)(186 211)(187 212)(188 213)(189 214)(190 215)(191 216)(192 217)(193 218)(194 219)(195 220)(196 221)
(1 213)(2 214)(3 215)(4 216)(5 217)(6 218)(7 219)(8 220)(9 221)(10 222)(11 223)(12 224)(13 197)(14 198)(15 199)(16 200)(17 201)(18 202)(19 203)(20 204)(21 205)(22 206)(23 207)(24 208)(25 209)(26 210)(27 211)(28 212)(29 126)(30 127)(31 128)(32 129)(33 130)(34 131)(35 132)(36 133)(37 134)(38 135)(39 136)(40 137)(41 138)(42 139)(43 140)(44 113)(45 114)(46 115)(47 116)(48 117)(49 118)(50 119)(51 120)(52 121)(53 122)(54 123)(55 124)(56 125)(57 179)(58 180)(59 181)(60 182)(61 183)(62 184)(63 185)(64 186)(65 187)(66 188)(67 189)(68 190)(69 191)(70 192)(71 193)(72 194)(73 195)(74 196)(75 169)(76 170)(77 171)(78 172)(79 173)(80 174)(81 175)(82 176)(83 177)(84 178)(85 166)(86 167)(87 168)(88 141)(89 142)(90 143)(91 144)(92 145)(93 146)(94 147)(95 148)(96 149)(97 150)(98 151)(99 152)(100 153)(101 154)(102 155)(103 156)(104 157)(105 158)(106 159)(107 160)(108 161)(109 162)(110 163)(111 164)(112 165)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 41)(2 40)(3 39)(4 38)(5 37)(6 36)(7 35)(8 34)(9 33)(10 32)(11 31)(12 30)(13 29)(14 56)(15 55)(16 54)(17 53)(18 52)(19 51)(20 50)(21 49)(22 48)(23 47)(24 46)(25 45)(26 44)(27 43)(28 42)(57 146)(58 145)(59 144)(60 143)(61 142)(62 141)(63 168)(64 167)(65 166)(66 165)(67 164)(68 163)(69 162)(70 161)(71 160)(72 159)(73 158)(74 157)(75 156)(76 155)(77 154)(78 153)(79 152)(80 151)(81 150)(82 149)(83 148)(84 147)(85 187)(86 186)(87 185)(88 184)(89 183)(90 182)(91 181)(92 180)(93 179)(94 178)(95 177)(96 176)(97 175)(98 174)(99 173)(100 172)(101 171)(102 170)(103 169)(104 196)(105 195)(106 194)(107 193)(108 192)(109 191)(110 190)(111 189)(112 188)(113 210)(114 209)(115 208)(116 207)(117 206)(118 205)(119 204)(120 203)(121 202)(122 201)(123 200)(124 199)(125 198)(126 197)(127 224)(128 223)(129 222)(130 221)(131 220)(132 219)(133 218)(134 217)(135 216)(136 215)(137 214)(138 213)(139 212)(140 211)
G:=sub<Sym(224)| (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,41)(8,42)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,49)(16,50)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,29)(24,30)(25,31)(26,32)(27,33)(28,34)(57,150)(58,151)(59,152)(60,153)(61,154)(62,155)(63,156)(64,157)(65,158)(66,159)(67,160)(68,161)(69,162)(70,163)(71,164)(72,165)(73,166)(74,167)(75,168)(76,141)(77,142)(78,143)(79,144)(80,145)(81,146)(82,147)(83,148)(84,149)(85,195)(86,196)(87,169)(88,170)(89,171)(90,172)(91,173)(92,174)(93,175)(94,176)(95,177)(96,178)(97,179)(98,180)(99,181)(100,182)(101,183)(102,184)(103,185)(104,186)(105,187)(106,188)(107,189)(108,190)(109,191)(110,192)(111,193)(112,194)(113,222)(114,223)(115,224)(116,197)(117,198)(118,199)(119,200)(120,201)(121,202)(122,203)(123,204)(124,205)(125,206)(126,207)(127,208)(128,209)(129,210)(130,211)(131,212)(132,213)(133,214)(134,215)(135,216)(136,217)(137,218)(138,219)(139,220)(140,221), (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,73)(9,74)(10,75)(11,76)(12,77)(13,78)(14,79)(15,80)(16,81)(17,82)(18,83)(19,84)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,65)(29,153)(30,154)(31,155)(32,156)(33,157)(34,158)(35,159)(36,160)(37,161)(38,162)(39,163)(40,164)(41,165)(42,166)(43,167)(44,168)(45,141)(46,142)(47,143)(48,144)(49,145)(50,146)(51,147)(52,148)(53,149)(54,150)(55,151)(56,152)(85,139)(86,140)(87,113)(88,114)(89,115)(90,116)(91,117)(92,118)(93,119)(94,120)(95,121)(96,122)(97,123)(98,124)(99,125)(100,126)(101,127)(102,128)(103,129)(104,130)(105,131)(106,132)(107,133)(108,134)(109,135)(110,136)(111,137)(112,138)(169,222)(170,223)(171,224)(172,197)(173,198)(174,199)(175,200)(176,201)(177,202)(178,203)(179,204)(180,205)(181,206)(182,207)(183,208)(184,209)(185,210)(186,211)(187,212)(188,213)(189,214)(190,215)(191,216)(192,217)(193,218)(194,219)(195,220)(196,221), (1,213)(2,214)(3,215)(4,216)(5,217)(6,218)(7,219)(8,220)(9,221)(10,222)(11,223)(12,224)(13,197)(14,198)(15,199)(16,200)(17,201)(18,202)(19,203)(20,204)(21,205)(22,206)(23,207)(24,208)(25,209)(26,210)(27,211)(28,212)(29,126)(30,127)(31,128)(32,129)(33,130)(34,131)(35,132)(36,133)(37,134)(38,135)(39,136)(40,137)(41,138)(42,139)(43,140)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,120)(52,121)(53,122)(54,123)(55,124)(56,125)(57,179)(58,180)(59,181)(60,182)(61,183)(62,184)(63,185)(64,186)(65,187)(66,188)(67,189)(68,190)(69,191)(70,192)(71,193)(72,194)(73,195)(74,196)(75,169)(76,170)(77,171)(78,172)(79,173)(80,174)(81,175)(82,176)(83,177)(84,178)(85,166)(86,167)(87,168)(88,141)(89,142)(90,143)(91,144)(92,145)(93,146)(94,147)(95,148)(96,149)(97,150)(98,151)(99,152)(100,153)(101,154)(102,155)(103,156)(104,157)(105,158)(106,159)(107,160)(108,161)(109,162)(110,163)(111,164)(112,165), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,41)(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,56)(15,55)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,48)(23,47)(24,46)(25,45)(26,44)(27,43)(28,42)(57,146)(58,145)(59,144)(60,143)(61,142)(62,141)(63,168)(64,167)(65,166)(66,165)(67,164)(68,163)(69,162)(70,161)(71,160)(72,159)(73,158)(74,157)(75,156)(76,155)(77,154)(78,153)(79,152)(80,151)(81,150)(82,149)(83,148)(84,147)(85,187)(86,186)(87,185)(88,184)(89,183)(90,182)(91,181)(92,180)(93,179)(94,178)(95,177)(96,176)(97,175)(98,174)(99,173)(100,172)(101,171)(102,170)(103,169)(104,196)(105,195)(106,194)(107,193)(108,192)(109,191)(110,190)(111,189)(112,188)(113,210)(114,209)(115,208)(116,207)(117,206)(118,205)(119,204)(120,203)(121,202)(122,201)(123,200)(124,199)(125,198)(126,197)(127,224)(128,223)(129,222)(130,221)(131,220)(132,219)(133,218)(134,217)(135,216)(136,215)(137,214)(138,213)(139,212)(140,211)>;
G:=Group( (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,41)(8,42)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,49)(16,50)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,29)(24,30)(25,31)(26,32)(27,33)(28,34)(57,150)(58,151)(59,152)(60,153)(61,154)(62,155)(63,156)(64,157)(65,158)(66,159)(67,160)(68,161)(69,162)(70,163)(71,164)(72,165)(73,166)(74,167)(75,168)(76,141)(77,142)(78,143)(79,144)(80,145)(81,146)(82,147)(83,148)(84,149)(85,195)(86,196)(87,169)(88,170)(89,171)(90,172)(91,173)(92,174)(93,175)(94,176)(95,177)(96,178)(97,179)(98,180)(99,181)(100,182)(101,183)(102,184)(103,185)(104,186)(105,187)(106,188)(107,189)(108,190)(109,191)(110,192)(111,193)(112,194)(113,222)(114,223)(115,224)(116,197)(117,198)(118,199)(119,200)(120,201)(121,202)(122,203)(123,204)(124,205)(125,206)(126,207)(127,208)(128,209)(129,210)(130,211)(131,212)(132,213)(133,214)(134,215)(135,216)(136,217)(137,218)(138,219)(139,220)(140,221), (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,73)(9,74)(10,75)(11,76)(12,77)(13,78)(14,79)(15,80)(16,81)(17,82)(18,83)(19,84)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,65)(29,153)(30,154)(31,155)(32,156)(33,157)(34,158)(35,159)(36,160)(37,161)(38,162)(39,163)(40,164)(41,165)(42,166)(43,167)(44,168)(45,141)(46,142)(47,143)(48,144)(49,145)(50,146)(51,147)(52,148)(53,149)(54,150)(55,151)(56,152)(85,139)(86,140)(87,113)(88,114)(89,115)(90,116)(91,117)(92,118)(93,119)(94,120)(95,121)(96,122)(97,123)(98,124)(99,125)(100,126)(101,127)(102,128)(103,129)(104,130)(105,131)(106,132)(107,133)(108,134)(109,135)(110,136)(111,137)(112,138)(169,222)(170,223)(171,224)(172,197)(173,198)(174,199)(175,200)(176,201)(177,202)(178,203)(179,204)(180,205)(181,206)(182,207)(183,208)(184,209)(185,210)(186,211)(187,212)(188,213)(189,214)(190,215)(191,216)(192,217)(193,218)(194,219)(195,220)(196,221), (1,213)(2,214)(3,215)(4,216)(5,217)(6,218)(7,219)(8,220)(9,221)(10,222)(11,223)(12,224)(13,197)(14,198)(15,199)(16,200)(17,201)(18,202)(19,203)(20,204)(21,205)(22,206)(23,207)(24,208)(25,209)(26,210)(27,211)(28,212)(29,126)(30,127)(31,128)(32,129)(33,130)(34,131)(35,132)(36,133)(37,134)(38,135)(39,136)(40,137)(41,138)(42,139)(43,140)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,120)(52,121)(53,122)(54,123)(55,124)(56,125)(57,179)(58,180)(59,181)(60,182)(61,183)(62,184)(63,185)(64,186)(65,187)(66,188)(67,189)(68,190)(69,191)(70,192)(71,193)(72,194)(73,195)(74,196)(75,169)(76,170)(77,171)(78,172)(79,173)(80,174)(81,175)(82,176)(83,177)(84,178)(85,166)(86,167)(87,168)(88,141)(89,142)(90,143)(91,144)(92,145)(93,146)(94,147)(95,148)(96,149)(97,150)(98,151)(99,152)(100,153)(101,154)(102,155)(103,156)(104,157)(105,158)(106,159)(107,160)(108,161)(109,162)(110,163)(111,164)(112,165), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,41)(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,56)(15,55)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,48)(23,47)(24,46)(25,45)(26,44)(27,43)(28,42)(57,146)(58,145)(59,144)(60,143)(61,142)(62,141)(63,168)(64,167)(65,166)(66,165)(67,164)(68,163)(69,162)(70,161)(71,160)(72,159)(73,158)(74,157)(75,156)(76,155)(77,154)(78,153)(79,152)(80,151)(81,150)(82,149)(83,148)(84,147)(85,187)(86,186)(87,185)(88,184)(89,183)(90,182)(91,181)(92,180)(93,179)(94,178)(95,177)(96,176)(97,175)(98,174)(99,173)(100,172)(101,171)(102,170)(103,169)(104,196)(105,195)(106,194)(107,193)(108,192)(109,191)(110,190)(111,189)(112,188)(113,210)(114,209)(115,208)(116,207)(117,206)(118,205)(119,204)(120,203)(121,202)(122,201)(123,200)(124,199)(125,198)(126,197)(127,224)(128,223)(129,222)(130,221)(131,220)(132,219)(133,218)(134,217)(135,216)(136,215)(137,214)(138,213)(139,212)(140,211) );
G=PermutationGroup([[(1,35),(2,36),(3,37),(4,38),(5,39),(6,40),(7,41),(8,42),(9,43),(10,44),(11,45),(12,46),(13,47),(14,48),(15,49),(16,50),(17,51),(18,52),(19,53),(20,54),(21,55),(22,56),(23,29),(24,30),(25,31),(26,32),(27,33),(28,34),(57,150),(58,151),(59,152),(60,153),(61,154),(62,155),(63,156),(64,157),(65,158),(66,159),(67,160),(68,161),(69,162),(70,163),(71,164),(72,165),(73,166),(74,167),(75,168),(76,141),(77,142),(78,143),(79,144),(80,145),(81,146),(82,147),(83,148),(84,149),(85,195),(86,196),(87,169),(88,170),(89,171),(90,172),(91,173),(92,174),(93,175),(94,176),(95,177),(96,178),(97,179),(98,180),(99,181),(100,182),(101,183),(102,184),(103,185),(104,186),(105,187),(106,188),(107,189),(108,190),(109,191),(110,192),(111,193),(112,194),(113,222),(114,223),(115,224),(116,197),(117,198),(118,199),(119,200),(120,201),(121,202),(122,203),(123,204),(124,205),(125,206),(126,207),(127,208),(128,209),(129,210),(130,211),(131,212),(132,213),(133,214),(134,215),(135,216),(136,217),(137,218),(138,219),(139,220),(140,221)], [(1,66),(2,67),(3,68),(4,69),(5,70),(6,71),(7,72),(8,73),(9,74),(10,75),(11,76),(12,77),(13,78),(14,79),(15,80),(16,81),(17,82),(18,83),(19,84),(20,57),(21,58),(22,59),(23,60),(24,61),(25,62),(26,63),(27,64),(28,65),(29,153),(30,154),(31,155),(32,156),(33,157),(34,158),(35,159),(36,160),(37,161),(38,162),(39,163),(40,164),(41,165),(42,166),(43,167),(44,168),(45,141),(46,142),(47,143),(48,144),(49,145),(50,146),(51,147),(52,148),(53,149),(54,150),(55,151),(56,152),(85,139),(86,140),(87,113),(88,114),(89,115),(90,116),(91,117),(92,118),(93,119),(94,120),(95,121),(96,122),(97,123),(98,124),(99,125),(100,126),(101,127),(102,128),(103,129),(104,130),(105,131),(106,132),(107,133),(108,134),(109,135),(110,136),(111,137),(112,138),(169,222),(170,223),(171,224),(172,197),(173,198),(174,199),(175,200),(176,201),(177,202),(178,203),(179,204),(180,205),(181,206),(182,207),(183,208),(184,209),(185,210),(186,211),(187,212),(188,213),(189,214),(190,215),(191,216),(192,217),(193,218),(194,219),(195,220),(196,221)], [(1,213),(2,214),(3,215),(4,216),(5,217),(6,218),(7,219),(8,220),(9,221),(10,222),(11,223),(12,224),(13,197),(14,198),(15,199),(16,200),(17,201),(18,202),(19,203),(20,204),(21,205),(22,206),(23,207),(24,208),(25,209),(26,210),(27,211),(28,212),(29,126),(30,127),(31,128),(32,129),(33,130),(34,131),(35,132),(36,133),(37,134),(38,135),(39,136),(40,137),(41,138),(42,139),(43,140),(44,113),(45,114),(46,115),(47,116),(48,117),(49,118),(50,119),(51,120),(52,121),(53,122),(54,123),(55,124),(56,125),(57,179),(58,180),(59,181),(60,182),(61,183),(62,184),(63,185),(64,186),(65,187),(66,188),(67,189),(68,190),(69,191),(70,192),(71,193),(72,194),(73,195),(74,196),(75,169),(76,170),(77,171),(78,172),(79,173),(80,174),(81,175),(82,176),(83,177),(84,178),(85,166),(86,167),(87,168),(88,141),(89,142),(90,143),(91,144),(92,145),(93,146),(94,147),(95,148),(96,149),(97,150),(98,151),(99,152),(100,153),(101,154),(102,155),(103,156),(104,157),(105,158),(106,159),(107,160),(108,161),(109,162),(110,163),(111,164),(112,165)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,41),(2,40),(3,39),(4,38),(5,37),(6,36),(7,35),(8,34),(9,33),(10,32),(11,31),(12,30),(13,29),(14,56),(15,55),(16,54),(17,53),(18,52),(19,51),(20,50),(21,49),(22,48),(23,47),(24,46),(25,45),(26,44),(27,43),(28,42),(57,146),(58,145),(59,144),(60,143),(61,142),(62,141),(63,168),(64,167),(65,166),(66,165),(67,164),(68,163),(69,162),(70,161),(71,160),(72,159),(73,158),(74,157),(75,156),(76,155),(77,154),(78,153),(79,152),(80,151),(81,150),(82,149),(83,148),(84,147),(85,187),(86,186),(87,185),(88,184),(89,183),(90,182),(91,181),(92,180),(93,179),(94,178),(95,177),(96,176),(97,175),(98,174),(99,173),(100,172),(101,171),(102,170),(103,169),(104,196),(105,195),(106,194),(107,193),(108,192),(109,191),(110,190),(111,189),(112,188),(113,210),(114,209),(115,208),(116,207),(117,206),(118,205),(119,204),(120,203),(121,202),(122,201),(123,200),(124,199),(125,198),(126,197),(127,224),(128,223),(129,222),(130,221),(131,220),(132,219),(133,218),(134,217),(135,216),(136,215),(137,214),(138,213),(139,212),(140,211)]])
136 conjugacy classes
class | 1 | 2A | ··· | 2O | 2P | ··· | 2AE | 4A | ··· | 4H | 7A | 7B | 7C | 14A | ··· | 14AS | 28A | ··· | 28AV |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 14 | ··· | 14 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
136 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D4 | D7 | D14 | D14 | D28 |
kernel | C23×D28 | C22×D28 | C23×C28 | D7×C24 | C22×C14 | C23×C4 | C22×C4 | C24 | C23 |
# reps | 1 | 28 | 1 | 2 | 8 | 3 | 42 | 3 | 48 |
Matrix representation of C23×D28 ►in GL5(𝔽29)
28 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
28 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 4 | 22 |
0 | 0 | 0 | 24 | 9 |
1 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 25 |
0 | 0 | 0 | 7 | 0 |
G:=sub<GL(5,GF(29))| [28,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,0,1,0,0,0,0,0,1],[28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28],[1,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,4,24,0,0,0,22,9],[1,0,0,0,0,0,28,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,25,0] >;
C23×D28 in GAP, Magma, Sage, TeX
C_2^3\times D_{28}
% in TeX
G:=Group("C2^3xD28");
// GroupNames label
G:=SmallGroup(448,1367);
// by ID
G=gap.SmallGroup(448,1367);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,1684,102,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^28=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations